A Fast, First Level Hardware Trigger for the D0 Central Fiber Tracker

by

Fred Borcherding D0 Upgrade Electronics Group, Fermilab

- D0 Detector at Fermilab is being upgraded for TeV II Running
- New Tracker for higher luminosity
- Scintillating Fiber Tracker part of the upgrade, CFT
- Fast, First level trigger from CFT as seed for other triggers.

Trigger Requirements::

- Crossing Every 132 nsec
 - \Rightarrow <n> = 1.8 events per crossing
 - ⇒ about 25 tracks per event
- Look at Each Crossing
 - ⇒ Pipeline events
- Produce Result in < 500 nsec
 - ⇒ Small Latency
- Many Channels
 - \Rightarrow 38,400 fibers in trigger
- Be Able to Adjust Algorithm
 - \Rightarrow Changes in Physics Interest
 - ⇒ Systematic Variations in as-built detector
- Keep Cost Low
- **♦ USE FPGA**
 - ⇒ Massively Parallel
 - ⇒ Fast Logic
 - ⇒ Re-programmable (in place)
 - ⇒ Commercial product Market pressure on cost/features enhancement

Central Fiber Tracker { CFT } Data Flow

Fiber Arrangements for Trigger

- Each PCB has fiber channels from a pie shaped sector
- All the channels needed to form a trigger are in the 'Home Sector' or either of two 'Neighbor Sectors'.

- Require all 8 of 8 layers have a hit
 - ⇒ Needed to reject fakes
- Narrow Roads
 - ⇒ Needed to reject fakes
 - ⇒ Pushes up Number of Equations
- Lowest Pt Possible
 - ⇒ Pushes up number of equations
- **♦ Pased on MC simulations** => 1 fiber wide bins

Threshold	Number of Equations	
6 GeV	1100 per cell / 4400 per sector	
3 GeV	2200 per cell / 8800 per sector	
1.5 GeV	3300 per cell / 13,200 per sector	

Forming Doublets

Two single layers are offset by about ½ fiber so there are no cracks

This offset character can be used to define different <u>Doublet</u> bin sizes

We make the Doublet bin size equal 1 fiber pitch

The equation for doublet bin j is:

$$HI[j] = (NOT(Ho[j+1]) AND Hi[k]) OR Ho[j];$$

Note that when a track passes through Hi[k] and Ho[j+1], Hl[j] will be FALSE and only Hl[j+1] will be TRUE.

Forming Tracks

First use equations to find 8 of 8 hits along each road:

T1013172227323945 = AL[10] AND BL[13] AND CL[17] AND DL[22] AND EL[27] AND FL[32] AND GL[39] AND HL[45];

The index numbers 10, 13, ... depend upon the details of the design

The several terms that share

inner - a phi bins and outer - h phi bins

are OR'ed together

 $Trig_a10h45 = T_{\underline{10}}13172227323945 \text{ OR } T10...45 \text{ OR } ...$

These terms are then OR'ed together into Pt bins

 $Trig_p7h45 = Trig_a10h45 OR Trig_a11h45 OR ...$

h45 => Phi bin 11 per cell / 44 per sector

p7 => Pt bin 8 Pt bins

88 Outputs

Serialization of Output

- ♦ Required output is list of first 6 hits in Pt order
- ♦ Each hit has a 6 bit phi address and 3 bit Pt bin identifier

- Sort results into a list of hits ordered by Pt (within phi bins)
- Sort two Pt bins in each FPGA 4 FPGAs used for 8 Pt bins
- Sort through 88 inputs

Serial Sort would require too much time - too many cycles

- Start Sort by putting groups of 4 into Truth Tables to create 22 lists
- Concatenate lists by pairs 5 levels required to reach one list

Distribution of Information

- ♦ Concatenate input lists
- ♦ Extend hit addresses to 16 bits each
- ♦ Add header word

Header	
address hit 1	
address hit 2	
address hit 3	
address hit 4	
address hit 5	
address hit 6	

- Continuously broadcast over copper, fast serial link
- 16 bits every 18.8 nsec
- 7 words (/ one crossing of data) every 132 nsec (/ every crossing)

Entire Process takes 420 nsec

80 nsec Signal Conditioning

180 nsec Track Finding

120 nsec Serialization

40 nsec (Start of) Distribution

Entire Process requires about 10 large FPGAs

4 Track Finding

4 Serialization

1-2 Distribution / Control

Use about 70,000 gates in each FPGA

Total Project requires 800 FPGAs